MILESTONE 4 – DETAIL DESIGN (MATERIALS SELECTION) | (Dotoil | Design | Dage 1 | of | 5 | |---------|--------|--------|----|---| | Detail | Design | Page 1 | UI | J | | | Structure | |------|-------------| | | X | | rune | 1 | | | Properties | | | Performance | | Team | Number: | 3 | |------|---------|---| | | | | ### **MAC IDs of Present Team Members** | kimd102 | channa 2 | |---------|----------| | demelk2 | wunderj | Implant Component: Fill in the Materials Selection table below related to the **Structure** of the material for at least 2-3 candidate materials that you will consider for this component. Note: You only have to fill in the parts you think are relevant, some may remain blank. | | Structure | | | | | | | |---|-------------|---|---------------------------------------|---------------|--|--|--| | Material | Class | Atomic
Arrangement | Interatomic Bonding
Classification | Marie W. S. | | | | | XPLE (Highly
Cross-linked
UHMWPE) | Pohetrylene | Crystalline
+ amorphous
cross-linked | covalent | Crypto Stock | | | | | zircomium
Proxide
(Zirconta) | Ceramic | (Allotrophic)
Tetragonal and
monoclinic crystal | covalent | The second of | | | | | Silicon | Ceramic | Crystalline | Covalent | TOPER ARE | | | | Team Number: 03 **MAC IDs of Present Team Members** | Kmd102 | channa2 | | |----------|---------|--| | demeile2 | wunderj | | Implant Component: Liner Fill in the Materials Selection table below related to the Properties of the material for at least 2-3 candidate materials that you will consider for this component. Note: You only have to fill in the parts you think are relevant, some may remain blank. You should use the same candidate materials you identified on Page 1! | | Properties | | | | | | | | |--|--------------------|------------------------|--|-------------|-------------------------|-------------------|-----------|--| | Material | Elastic
Modulus | Ultimate
Strength | Toughness, Fracture (brittle/ ductile) | Wear | Corrosion
Resistance | Bio compatibility | 1 Hickory | | | Highly assistinged
UHIMUPE
(HXLPE) | ≥648 MPQ
Lowest | 50.2 MPa
Lowest | active | G002 | Good | Good | | | | Zirconia | 205 GPa | 800-1500MPa
Highest | Can be brittle | Cood | G008 | Good | | | | Silicon | 300GPa
Highest | 2400MPa | brittle | 8009
New | Soo 7 | 1 3009
New 1 1 | | | ### MILESTONE 4 - DETAIL DESIGN (MATERIALS SELECTION) Processing Properties (Detail Design Page 3 of 5) Team Number: 03 **MAC IDs of Present Team Members** Memerk 2 _Channa2 winder; Implant Component: Fill in the Materials Selection table below related to the **Processing** of the material for at least 2-3 candidate materials that you will consider for this component. Note: You only have to fill in the parts you think are relevant, some may remain blank. You should use the same candidate materials you identified on Page 1! | | Processing | | | | | | | |----------------|------------|---------------|---------------------------------------|--|---|--|--| | Material | Coatings | Drug delivery | Corrosion
Resistance | | coating | | | | XPLE | 'PMPC. | HIM | Cross 1: Ared,
low wear | reduced free radicals from cross-lanking | similar
extento
natural
cartiledge | | | | Zirconia | DMPC | M/A | Ticused as | metal free | w 11 | | | | Sili con Nitik | | NIA | can be enhanced by adding o coatings. | | u // | | | IBEHS 1P10 - Project Two: Hip to be Square # MILESTONE 4 - DETAIL DESIGN (Detail Design Page 4 of 5) ### 3 Team Number: **MAC IDs of Present Team Members** KIMD 102 demel 12 wunders channa2 and Based on the tables on the previous pages, your team will consider UHMWPE as potential materials for this component. ZIFCONIA Explain why you selected these based on their structure, properties, processing or performance? good wear properties due to Highly cross-linked UHMWPE has the crosslinking, and by surface-treating XLPE with PMPC, which subricates the surface, the liner can have even longer wear eyacs, Also, unlike UHMWPE, XLPE Produces less wear debris which cycles, Also, unlike can cause asteolysis, Which subricates which would easily, Under high stress, its phase the volume stops crack growth, and ultimate strength Elastic modulus prevent the liner from talling transformation which increases high has Zirconia For the whole design: Comment on why the materials selected for all components makes the most sense for your patient: as he has active Wimon Hounsou, prefers to stay Our patient, a result, Jes 4 variety of sports despite his groin pain. suce he was young, playing peen the lines has to have 800d wear properties that is able to withstand which would and Percetion, while creating minimal wear debris that Edn acteolysis, our patient Weighs 801cg, which wo has high elastic modulus and ultimate smength, and excellent has XLPE surface-treated with PMPC SHC. U.S.O.S.C. geore course High afe afe UMIGNE wholevoping property to stop crack growth, would be a Suttable material for the liner. 80 DP-2 | - (| Detail | Design | Daga | 4 | of | E | |-----|--------|---------|------|---|----|------| | - 4 | Dotan | Designi | raue | - | oı | . 11 | Team Number: 3 #### **MAC IDs of Present Team Members** Channa 2 wunder; (i.e. the load-bearing demelk 2 kind 102 Implant Component: Femoral Stem Titanin alloy (TiO2) Hydraxyapatite (care (poils (ph Fill in the Materials Selection table below related to the **Structure** of the material for at least 2-3 candidate materials that you will consider for this component. Note: You only have to fill in the parts you think are relevant, some may remain blank. thouse as the "workhorse" of titanium alloysa more bicompatible (more offential) increased cell adherinal bane amount | | Company of the Company | Structure | | | | | |---|------------------------|-----------------------|---------------------------------------|------------------------------------|--|--| | Material | Class | Atomic
Arrangement | Interatomic Bonding
Classification | a construction of construction | | | | - Titanium
Alloy (TiGA14V) | Metal | Crystalline | Metallic
Bonding | | | | | Hydroxyapatite
(Ca,o (PO4) c (OH) 2) | | Crystalline | Bonding (a calcium phosphate) | | | | | Carbon
nanofiber | Ceramic | Graphene
Sheets | Covalent
Bonding | The hard section of the section of | | | **MAC IDs of Present Team Members** wunder; kind 102 Implant Component: Fill in the Materials Selection table below related to the Processing of the material for at least 2-3 candidate materials that you will consider for this component. Note: You only have to fill in the parts you think are relevant, some may remain blank. You should use the same candidate materials you identified on Page 1! channa 2 denelk 2 | | Processing | | | | | | |-------------------|--|-----------------------|-------------------------|----------------|-------------------------|--------| | Material | Coatings spraye | Drug delivery options | Corrosion
Resistance | 村童童地 | The Real Property lives | 100 | | Titanium
Alloy | Can be coated with
hydroxyapatite
(helps promote associategration) | | Hgh | sylphother the | | Se con | | Hydroxyapatite | Serves as a very good coating material | | Good | 25 44 18 | I Si | | | Carbon | Serves as a very good/stong outing material | - | Good | | | 1 | ### MILESTONE 4 - DETAIL DESIGN (MATERIALS SELECTION) (Detail Design Page 2 of 5) Team Number: 3 **MAC IDs of Present Team Members** Channa 2 demelk 2 kind 102 wunder Implant Component: 5+em Fill in the Materials Selection table below related to the Properties of the material for at least 2-3 candidate materials that you will consider for this component. Note: You only have to fill in the parts you think are relevant, some may remain blank. You should use the same candidate materials you identified on Page 1! | | Properties | | | | | | | | | |-------------------|------------------------|---|--|--|-------------------------|-------------------|-----------|--|--| | Material | Elastic
Modulus | Ultimate
Strength | Toughness, Fracture (brittle/ ductile) | Fatigue -Wear | Corrosion
Resistance | Bio
Compatible | non-nflam | | | | Titanium
Alloy | 120 GPa | Very strong due to
high density & tensil
strength | · higher toughness than pure titenium | Good fatigue
Strength
(but low shear at
and poner near r | High mathemas) | Yes | Yes | | | | Hydroxyapatite | ~80 GPa | 2 3 19 1 | · brittle in nature imay be susceptible to | very closely represents the properties of human enamel (good fatig | ve strength 1 | Yes | Yes | | | | Carbon | 600
GPa
(sprong) | ~27 GPa
(shff) | · carbon nanofiters
enhance/improve
toughness & strength | Good fatge | Good | Yes | Yes | | | IBEHS 1P19 - Project Two: Hip to be Square # MILESTONE 4 - DETAIL DESIGN (Detail Design Page 4 of 5) ## Team Number: 3 MAC IDs of Present Team Members | ١ | | |---|-------| | - | d | | 6 | R | | 2 | 2 | | 2 | em | | 2 | न्द्र | | ٦ | | | | | | | 6 | |---|---| | , | 0 | | | 0 | | ı | 3 | | | Y | | | | 7. 6A1 4V Based on the tables on the previous pages, your team will consider Hydroxyapahle as potential materials for this component. reduces the Shielding in titanium as a material is bib-compatible nonwould be the safe to be inplanted into hard and Explain why you selected these based on their structure, properties, processing or performance? potental a strong structure of titanium alloys allows for a strong Still maintaining a low elastic modulus and reduce materials Because lower elastic modulus, reduce the effect of great being used making it combination with a Kydrograppatite coating Generages bone remodelling after implant), these are both For the whole design: consider. as opposed body, h as addition, because afternor by and crystalline structure of non-inflammatory nisk of side effects & for facture, Becassing of structure, while better option. W 2 toxic, Comment on why the materials selected for all components makes the most sense for your patient: (he is quite heavy help Swagenes his actue Zo Pasily metal multiple titanium bone lifestyle, so having a tital statistics that do not fatigue also having metal PION + Hannay place hydroxyapat into formy Siha patient's encouraging not Dimon also a long-term solution patient leads an active Stress Jeons delina patient Dranding Team Number: 03 **MAC IDs of Present Team Members** | winder: | denelk2 | |----------|----------| | Kind 102 | channa 2 | Implant Component: hip bone extension / acetabular cup Fill in the Materials Selection table below related to the **Structure** of the material for at least 2-3 candidate materials that you will consider for this component. Note: You only have to fill in the parts you think are relevant, some may remain blank. | | SURE CONTRACTOR | Structure | | | | | | | | |--------------------------|-----------------|-----------------------|---------------------------------------|---------------------------------|------------------------------|------------|--|--|--| | Material | Class | Atomic
Arrangement | Interatomic Bonding
Classification | Porous architecture | bone growth sindan very high | Anistrapho | | | | | Tritanium | metal | crystalline | metallic | bone kancelb | a. | Isotrop | | | | | | metal | Crystolline | metallic | | low, needs coating | Isotra | | | | | Titanium
Ti-13N6-13Zr | | crystaline | metallic | morne bone, random, very populs | very high | Isotropi | | | | | Tantalum | metal | | | | | | | | | #### Acetabular cup/ bone extension: | Material | | | | | | | | |--|--|-------------------|--|---|--|--|--------------------| | | Elastic
Modulus | UTS | Toughness/
Fracture | Fatigue | Corrosion resistance | Effect on bone density | Pore size | | Tritanium
(compara
ble to 3D
printed
titanium) | 106-115
lowest of
the three,
minimal
stress
shielding | High
strengths | Can
depend on
the cooling
systems
used | Similar to titanium alloys, so Ti-13Nb-1 3Zr will have a stronger resistance to corrosion | High corrosion resistance but can be susceptible to pitting and cracks | Strength and rigidity lies
between titanium and
tantalum, will allow for some
bone density to be
recovered and also a good
fusion, good
osseointegration and
biocompatibility | 100-700micrometers | | Ti-13Nb-
13Zr | 79 GPa
Lower
than
Cobalt
chromium
, will
reduce
stress
shielding | 945 MPa | 20% higher fracture toughness compared to other titanium alloys | Higher fatigue endurance limit, equivalent to 10,000,00 0 cycles | Resistant to corrosion | Lower rigidity allows for better bone development and regrowth | >500micrometers | |------------------|--|---------|---|--|----------------------------------|---|--| | Tantalum | 186 GPa | 900MPa | Low mechanical properties can complicate load bearing aspects | Not much
implant
migration
or
loosening | Highly
corrosion
resistant | Very rigid implant allows for
very good fusion however
bone density could be
compromised | 400-600 micrometers
Can be adjusted | IBEHS 1P10 - Project Two: Hip to be Square ## MILESTONE 4 - DETAIL DESIGN (Detail Design Page 4 of 5) ### Team Number: 03 MAC IDs of Present Team Members demelka Channa 2 Based on the tables on the previous pages, your team will consider 77-dans 13-13-2- and as potential materials for this component. Explain why you selected these based on their structure, properties, processing or performance? they both allow bone to grow and less fast. But materials are strong biscompatable and relatively casy to make and/or have For the Whole design: the abilities to make them. They also addere to bone well and whon titinium is coated very stony properties and word broad as fatigue agasily. We selected those two potential materials since they both have Comment on why the materials selected for all components makes the most sense for your patient: do not lakace exists and are overall very strong, which is also important as we are truing to extend the his bone down so the motorial uses bone, These motorials also allow the bone surrounding the implant to grow into and onto it forther security it inplace. Since our patient wants to live an active lifestyle the nationals have to not latored and lest a long time. Both 80 DP-2 ### MILESTONE 4 - DETAIL DESIGN (MATERIALS SELECTION) (Detail Design Page 3 of 5) Team Number: 03 **MAC IDs of Present Team Members** | hunder; | Channa 2 | |-----------|----------| | Kim d 102 | demelkz | Implant Component: hip bone extension /acetabular cup Fill in the Materials Selection table below related to the **Processing** of the material for at least 2-3 candidate materials that you will consider for this component. Note: You only have to fill in the parts you think are relevant, some may remain blank. You should use the same candidate materials you identified on Page 1! | Processing | | | | | | | | |--------------|--------------------|-----------------------|--|------------------------------------|---|---|--| | Material | Coatings | Drug delivery options | Corrosion
Resistance | manufactumo | effect of coating doesn't get | environment
for COU growt
osteoblests | | | Tritanium | be conted, already | | high resistance,
susceptible to
cracks | additive manufacturing | a fal | present | | | Titanium | needs to be | N/A | resistant | LIE IAIIO. J. | has coating added to it | osters lasts | | | T:-13Nb-13Zr | Good coating | | hi-gh-ly resistant | naturally occurring, electroly sis | increase bone growth whom added on to implant | present | | | Tantalum | naterial | NIA | | | 11110000 | | |